Seeing(Engelstalig)

Seeing(Engelstalig)

Berichtdoor Ton Dix » zo 01 nov 2009, 14:16

Astronomical seeing refers to the blurring and twinkling of astronomical objects such as stars caused by turbulence in the Earth's atmosphere. It is the equivalent of looking at the bottom of a lake on a windy day. The astronomical seeing conditions on a given night at a given location describe how much the Earth's atmosphere perturbs the images of stars as seen through a telescope. The most common seeing measurement is the diameter (technically full width at half maximum or FWHM) of the seeing disc (the point spread function for imaging through the atmosphere). The point spread function diameter (seeing disc diameter or "seeing") is a reference to the best possible angular resolution which can be achieved by an optical telescope in a long photographic exposure, and corresponds to the diameter of the fuzzy blob seen when observing a point-like star through the atmosphere. The size of the seeing disc is determined by the astronomical seeing conditions at the time of the observation. The best conditions give a seeing disk diameter of ~0.4 arcseconds and are found at high-altitude observatories on small islands such as Mauna Kea or La Palma. A detailed description of the seeing disc can be found in the FWHM of the seeing disc subsection of the following article.

Seeing is one of the biggest problems for Earth-based astronomy: while the big telescopes have theoretically milli-arcsecond resolution, the real image will never be better than the average seeing disc during the observation. This can easily mean a factor of 100 between the potential and practical resolution. Starting in the 1990s, new adaptive optics have been introduced that can help correct for these effects, dramatically improving the resolution of ground based telescopes.

The effects of astronomical seeing

Typical short-exposure negative image of a binary star (Zeta Boötis in this case) as seen through atmospheric seeing. Each star should appear as a single point, but the atmosphere causes the images of the two stars to break up into two patterns of speckles (one pattern above left, the other below right). The speckles are a little difficult to make out in this image due to the coarse pixel size on the camera used (see the simulated images below for a clearer example). The speckles move around rapidly, so that each star appears as a single fuzzy blob in long exposure images (called a seeing disc). The telescope used had a diameter of about 7r0 (see definition of r0 below, and example simulated image through a 7r0 telescope).

Astronomical seeing has several effects:

1. It causes the images of point sources (such as stars) to break up into speckle patterns, which change very rapidly with time (the resulting speckled images can be processed using speckle imaging)
2. Long exposure images of these changing speckle patterns result in a blurred image of the point source, called a seeing disc
3. The brightness of stars appears to fluctuate in a process known as scintillation or twinkling
4. Atmospheric seeing causes the fringes in an astronomical interferometer to move rapidly
5. The distribution of atmospheric seeing through the atmosphere (the CN2 profile described below) causes the image quality in adaptive optics systems to degrade the further you look from the location of reference star

The effects of atmospheric seeing were indirectly responsible for the belief that there were canals on Mars. In viewing a bright object such as Mars, occasionally a still patch of air will come in front of the planet, resulting in a brief moment of clarity. Before the use of charge-coupled devices, there was no way of recording the image of the planet in the brief moment other than having the observer remember the image and draw it later. This had the effect of having the image of the planet be dependent on the observer's memory and preconceptions which led the belief that Mars had linear features.
Avatar gebruiker
Ton Dix
 
Berichten: 67
Geregistreerd op: vr 30 okt 2009, 11:31

Keer terug naar Begrippen en Uitleg

Wie is er online

Gebruikers op dit forum: Google [Bot] en 1 gast

cron